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A Method to Generate Decision Rules Automatically for Image Analysis
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In this report, we propose a method to generate rules automatically for image analysis such

as segmentation. The method used for segmentation is best described by the following paper

submitted to the North American Fuzzy Information Proceeding Society (NAFIPS '92). For this

report, slight modifications are made where only the experimental example differs from the original

paper.
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ABSTRACT

Many high-level vision systems use rule-based approaches to solve problems such as

autonomous navigation and image understanding. The rules are usually elaborated by experts.

However, this procedure may be rather tedious. I_n this paper, we propo_ a method to generate

such rules automaticklly from training data. The proposed method is also capable of filtering out

irrelevant features and criteria from the rules.

1. Introduction

High-level computer vision involves complex tasks such as image understanding and scene

interpretation. In domains where the models of the objects in the image can be precisely defined,

(such as the blocks world, or even the world of generalized cylinders) existing techniques for

description and interpretation perform quite well. However, when this is not the case (such as the

case of outdoor scenes or extra-terrestrial environments), traditional techniques do not work well.

For this reason, we believe that the greatest contribution of fuzzy set theory to computer vision will
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be in the area of high-level vision. Unfortunately, very little work has been done in this highly

promising area. Fuzzy set theoretic approaches to high-level vision have the following advantages

over traditional techniques: i) they can easily deal with imprecise and vague properties,

descriptions, and rules, ii) they degrade more gracefully when the input information is incomplete,

iii) a given task can be achieved with a more compact set of rules, iv) the inferencing and the

uncertainty (belief) maintenance can both be done in one consistent framework, v) they are

sufficiently flexible to accommodate several types of rules other that just IF-THEN rules. Some

examples of the types of rules that can be represented in a fuzzy framework are [1] possibility rules

("The more X is A, the more possible that B is the range for Y"), certainty rules ("The more X is

A, the more certain Y lies in B"), gradual rules ("The more X is A, the more Y is B"), unless rules

[2] ("if X is A, then Y is B unless Z is C").

The determination of properties and attributes of image regions and spatial relationships

among regions is critical for higher level vision processes involved in tasks such as autonomous

navigation, medical image analysis and scene interpretation. Many high-level systems have been

designed using a rule-based approach [3,4]. In these systems, common-sense knowledge about the

world is represented in terms of rules, and the rule are then used in an inference mechanism to

arrive at a meaningful interpretation of the contents of the image. In a rule-based system to interpret

outdoor scenes, typical rules may be

IF a REGION is RATHER THIN AND SOMEWHAT STRAIGHT

THEN it is a ROAD

IF a REGION is RATHER GREEN AND HIGHLY TEXTURED AND

IF the REGION is BELOW a SKY REGION

THEN it is TREES

Attributes such as "THIN" and "NARROW", and properties such as "BRIGHT" and

"TEXTURED" defy precise definitions, and they are best modeled by fuzzy sets. Similarly, spatial

relationships such as "LEFT OF ", "ABOVE" and "BELOW" are difficult to model using the all-

or-nothing traditional techniques [5]. We may interpret the attributes, properties and relationships
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as "criteria". Therefore, we believe that a fuzzy approach to high-level vision will yield more

realistic results.

In most rule-based systems, the rules are usually enumerated by experts, although they

may also be generated by a learning process. Several techniques have been suggested in the

literature to generate rules for control problems [6-9], some of which use neural net methods to

model the control system [7-12]. These systems convert a given set of inputs to an output by

fuzzifying the inputs, performing fuzzy logic, and then finally defuzzifying the result of the

inference to generate a crisp output [13]. Some of the methods also "tune" the membership

functions that define the levels (such as "LOW", "MEDIUM" and "HIGH") of the input variables

[10]. While these methods have been shown to be very effective in solving control problems, they

cannot be directly used in high-level vision applications. For example, in control systems, the

fuzzy rules have consequents which are usually a desired level of a control signal whereas in high-

level vision, the consequent clauses are usually fuzzy labels. Also, it is desirable that membership

functions for levels of fuzzy attributes such as "THIN", and "NARROW", and properties such as

"BRIGHT" be related to how humans perceive such attributes or properties. Hence they have very

little to do with the decision making or reasoning process in which they are employed. In many

reasoning systems for high-level vision, confidence (or importance) factors are associated with

every rule since the confidence in the labeling may depend on the confidence of the rule itself. In

this paper, we propose a new method to generate rules for high-level vision applications

automatically. The rules so obtained may be combined with the rules given by the experts to

complete the rule base.

In Section 2, we describe several fuzzy aggregation operators which can be used in

hierarchical (multi-layer) aggregation networks for multi-criteria decision making. In Section 3, we

describe how these aggregation networks can be used to f'dter out irrelevant attributes, properties,

and relationships and at the same time generate a compact set of fuzzy rules (with associated

confidence factors) that describes the decision making process. In Section 4 we present some
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experimental results on automatic rule generation. Finally Section 5 contains the summary and

conclusions.

2. Fuzzy Aggregation Operators

Fuzzy set theory provides a host of very attractive aggregation connectives for integrating

membership values representing uncertain and subjective information [14]. These connectives can

be categorized into the following three classes based on their aggregation behavior:, i) union

connectives, ii) intersection connectives, and iii) compensative connectives. Union connectives

produce a high output whenever any one of the input values representing different features or

criteria is high. Intersection connectives produce a high output only when all of the inputs have

high values. Compensative connectives are used when one might be willing to sacrifice a little on

one factor, provided the loss is compensated by gain in another factor. Compensative connectives

can be further classified into mean operators and hybrid operators. Mean operators are monotonic

operators that satisfy the condition: min(a,b) < mean(a,b) < max(a,b). The generalized mean

operator [ 15] as given below is one of such operator.

g(x t ...... L;p, wt ..... w,) = w_x , where w_ = 1. (1)
_, i=1 ] i=1

The wi's can be thought of as the relative importance factors for the different criteria. The

generalized mean hag several attractive properties. For example, the mean value always increases

with an increase in p [15]. Thus, by varying the value ofp between --_ and +**, we can obtain all

values between min and max. Therefore, in the extreme cases, this operator can be used as union

or intersection. The _model devised by Zimmermann and Zysno [i6] is an example of hybrid

operators, and it is defined by

(0)'( n )'y = x_6' 1- (1-x i)8' , where t_ = n and 0 _<_, -< 1. (2)
i=1 i=1

In general, hybrid operators are defined as the weighted arithmetic or geometric mean of a pair of

fuzzy union and intersection operators as follows.
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A _TB = (I- ?') (A C_ B) + 7(A U B) (3)

A ®TB = (An B)( 1- _)(A u B)r (4)

The parameter ?'in (3) and (4) controls the degree of compensation. The y-model in (2) is a hybrid

operator of the type in (4). The compensative connectives are very powerful and flexible in that by

choosing correct parameters, one can not only control the nature (e. g. conjunctive, disjunctive and

compensative), but also the attitude (e. g. pessimistic and optimistic) of the aggregation.

One can formulate the problem of multicriteria decision making as follows. The support for

a decision may depend on supports for (or degrees of satisfaction of) several different criteria, and

the degree of satisfaction of each criterion may in turn depend on degrees of satisfaction of other

sub-criteria, and so on. Thus, the decision process can be viewed as a hierarchical network, where

each node in the network "aggregates" the degree of satisfaction of a particular criterion from the

observed support. The inputs to each node are the degrees of satisfaction of each of the sub-

criteria, and the output is the aggregated degree of satisfaction of the criterion. Thus, the decision

making problem reduces to i) selecting robust and useful criteria for the problem on hand, ii)

finding ways to generate memberships (degrees of satisfaction of criteria) based on values of

features (criteria) selected, and iii) determining the structure of the network and the nature of the

connectives at each node of the network. This includes discarding irrelevant criteria to make the

network simple and robust.

In our previous research, we have investigated the properties of several union and

intersection operators, the generalized mean, and the y-model [14,17]. We have shown that

optimization procedures based on gradient descent and random search can be used to determine the

proper type of aggregation connective and parameters at each node, given only an approximate

structure of the network and given a set of training data that represent the inputs at the bottom-most

level and the desired outputs at the top-most level [14,17]. In this paper, we extend this idea to the

detection of irrelevant attributes and automatic rule generation.
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3. Redundancy Analysis and Rule Generation

In the approach we propose, we f'trst fuzzily partition the range of values that each criterion

(property or an attribute or a relation) can take into several linguistic intervals such as LOW,

MEDIUM and HIGH. The set of properties or .an attributes or a relations which are used are the

ones that may appear in the antecedent clause of a rule. As explained in Section 1, the membership

function for each level needs to be determined according to how humans perceive such attributes,

properties or relations. The membership values for an observed attribute, property or relationship

value in each of the levels is calculated using such membership functions. (Methods to generate

degrees of satisfaction of relationships such as "LEFT OF" may be found in [18]). The

memberships are then aggregated in a fuzzy aggregation network of the type shown in Figure 1.

The top nodes of the network represent the labels that may appear in the consequents of the rules.

A suitable structure for the network, and suitable fuzzy aggregation operators for each node are

chosen. The network is then trained with typical attribute, property or relationship data with the

corresponding desired output values for the various labels to learn the aggregation connectives and

connections that would best describe in input-output relationships. The learning may be

implemented using a gradient descent approach similar to the backpropagation algorithm [ 14,17]. It

is to be noted that there is a constraint on the weights.

L SL M SH H L SL M SH H

Feature 1 Feature N

Figure 1 "Network for generating fuzzy rules.
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Our experiments indicate that the choice of the network is not very critical. Also any

compensative aggregation operator seems to yield good results. In all the results shown in this

paper, we used the generalized mean operator as the aggregation operator. As indicated in Section

2, the generalized mean can closely approximate a union (intersection) operator for a large positive

(negative) value of p. We start the training with the generalized mean aggregation function with

p= 1. ff the training data is better described by a union (intersection) operator, then the value of p

will keep increasing (decreasing) as the training proceeds, until the training is terminated when the

error becomes acceptable. Also, the weights wi in (1) may be interpreted as the relative importance

factors for the different criteria. Initially we start the training with all the weights associated with a

node being equal. As the training proceeds the weights automatically adjust so that the overall error

decreases. Some of the weights eventually become very small. Thus, the training procedure has the

ability to detect certain types of redundancies in the network. In general, there are three types of

redundancies (irrelevant criteria) that are encountered in decision making [17]. These correspond to

uninformative, unreliable and superfluous criteria.

Uninformative Criteria: These are criteria whose degrees of satisfaction are always approximately

the same, regardless of the situation. Therefore, these criteria do not provide any information about

the situation, thus contributing little to the decision-making process. For example, low texture

content is a criterion that is always satisfied for both clear skies and roads, and hence it would be a

uninformative criterion if one needs to distinguish between these two labels. Uninformative criteria

do not contribute to the robustness of the decision making process, and therefore it is desirable that

they be eliminated.

Unreliable Criteria: These correspond to criteria whose degrees of satisfaction do not affect the

final decision. In other words, the final decision is the same for a wide range of degrees of

satisfaction. For example, color would be an unreliable criterion for distinguishing a rose from a

hibiscus because they both come in similar colors. Unreliable criteria do not contribute to the

robustness of the decision making process, and therefore it is desirable that they be eliminated.
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Superfluous Criteria: These are criteria which are strictly speaking not required to make the

decision. The decisions made without considering such criteria may be as accurate or as reliable.

For example, one may want to differentiate planar surfaces from spherical surfaces using Gaussian

and mean curvatures, but the criteria are superfluous because either one of them is sufficient to

distinguish between planar and spherical surfaces. However, redundancies of this type are not

entirely without utility, since such redundancies make the decision making process more robust. If

one criterion fails for some reason, we may still be able to arrive at the correct decision using the

other. Hence such redundancies may be desirable to increase the robusmess of the decision-making

process.

Redundancy Detection and Estimation of Confidence Factors: A connection is considered

redundant if the weight associated with it gradually approaches to zero (or a small threshold value)

as the learning proceeds. A node (associated with a criterion) is considered redundant if all the

connections from the output of this node to other nodes become redundant. Our simulations show

that both in the case of uninformative criteria and unreliable criteria, the weights corresponding to

all the output connections go to zero. Therefore such nodes (criteria) are eliminated from the

structure. The examples in Section 4 illustrate this idea.

Rule Generation: The networks that finally result from this training process can be said to represent

rules that may be used to make the decisions. If the final value of the parameter p at a given node is

greater than one, the nature of the connective is disjunctive. If the value is less than one, it is

conjunctive. Once the nature of the connective at each node is determined, we can easily construct

the fuzzy rules that describe the input-output relations. In Section 4 we present some examples of

this approach.

4. Experimental results

In this section, we present some typical experimental results involving real data to show the

effectiveness of the proposed automatic rule generation method. The method is shown to generate

decision rules that best describe the decision criteria for the classes in the experiment. Figure 1
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shows the general 3 layer neural network used to generate the rules. The input layer consists of nN

number of input nodes where N is the number of fuzzy features or criteria (such as properties and

relationships) and n is the number of linguistic levels used to partition each feature. For the hidden

layer, there are nN hidden nodes where each node is connected to all but one (i.e., it is connected

to n-1) input nodes representing levels within each feature. The top layer fully connects the hidden

layer. In the experimental results shown here, we used 5 fuzzy linguistic levels to represent each

feature, therefore, each hidden node has 4 connections. Other types of network structures were

also tried, however the one described above produced the best results. The target values in the

training data were chosen to be 1.0 for the class from which the training data was extracted, and

0.0 for remaining classes. The feature values were always normalized so that they fall in the range

[0,1]. Figure 2 depicts the trapezoidal fuzzy sets used to model the intuitive notions of the five

linguistic levels LOW (L), SOMEWHAT LOW (SL), MEDIUM (M), SOMEWHAT

HIGH (SH), and HIGH.

1.0

0.8

"_ 0.6

.8

o 0.4

0.2

L SL M SH

./
0.2 0.4 0.6 0.8

Discourse

H

• I

1.0

Figure 2 • Graphical representations of various fuzzy sets.
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4.1 Example

Figure 3(a) shows a 200x200 image used for training in order to obtain rules that best

describes the object (shuttle) and background. After examining a variety of possible features to be

used, the two best features chosen were the difference entropy and contrast features. For

definitions of the features, see report on membership generation methods. Figures 3(b) and 3(c)

show images using these features. Figure 3(d) shows the scatter plot of the training samples

extracted from two different regions (shuttle and background) in the image. We used 50 samples

from each class. The membership values in each linguistic level for each sample is computed using

the membership functions shown in Figure 2, and these with the corresponding desired targets are

used aso_Taining data in the training algorithm described in Section 3. Figure 4 shows the reduced

network after training. All the connections with weights below a value of 0.01 were considered

redundant. Table 1 shows the final weights (which determine the confidence factors of the rules

and criteria) and the p parameter values (which determine the conjunctive or disjunctive nature of

the connective) for the specified nodes in Figure 4. Using the properties for the p values obtained,

the following rules are generated, as discussed in Section 3.

Class Shuttle = (Difference Entropy MvDifference Entropy SHvDifference Entropy H) v

(Contrast SL). (5)

In other words, the rule may be summarized as

RShuttle " IF Difference Entropy is M or SI-I or I-I or Contrast is SL

THEN the class is Shuttle.

Similarly,

ClassBackground--(Diffe nc -E -tropySL,,DifferenceEntropy ,,

(Contrast L) (6)

and

RBackground " IF Difference Entropy is SL or SH and Contrast is L

THEN the class is Background.
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These rules makes sense since by expanding (5) and (6), the expansions results in the appropriate

cell locations where the training samples are located in Figure 3(d).

(a) (b)

!

J

_ i

i

f

m

(c)

Figure 3(a)" image for training, (b) • difference entropy image, and (c)" contrast image.
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Figure 4" Reduced network after training.
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Table 1 • Values of weights and parameterp for the reduced network.

weights p

node 1 5.48

node2

node3

node4

node5

node6

node7

0.70
0.15
0.15

0.94 -0.21
0.06

0.49 7.04
0.01
0.50

0.94 4.00
0.06

1.0 0.78

1.0 1.88

1.0 1.88
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4.2 Segmentation

Figure 5(a) shows a 200x200 test image for segmentation using the reduced network after

training shown in Figure 4. Figures 5(b) and 5(c) show images of the two features (difference

entropy and contrast) that were chosen previously. After employing the shrink and expand

algorithm to remove noise points, the resulting segmented image is shown in Figure 5(d).

5. Summary and Conclusions

In this paper, we introduced a new method for automatically generating rules for high level

vision. The range of each feature is fuzzily partitioned into several linguistic intervals such as

LOW, MEDIUM and HIGH. The membership functi0n for each level is determined, and the

membership values for an observed feature value in each of the linguistic levels is calculated using

these membership functions. The memberships are then aggregated in a fuzzy aggregation

network. The networks are trained with typical data to learn the aggregation connectives and

connections that would give rise to the desired decisions. The learning process can also be made to

discard redundant features. The networks that finally result from this training process can be said

to represent rules that may be used to make the decisions. Riseman et al used similar rules for
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segmentation and labeling of outdoor scenes, but the weights used in the aggregation scheme were

determined empirically [191. The ability to generate rules that can be used in fuzzy logic and rule-

based systems directly from training data is a novel aspect of our approach. One of the issues that

requires investigation is the choice of the number of linguistic levels and its effect on the decision

making process.
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(c) (d)

Figure 5(a) • image for testing, (b) • difference entropy image,

(c) • contrast image, and (d)" segmented image
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